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The discrete energy spectrum of the q-analog of the two-dimensional hydrogen 
atom is derived by deforming the Pauli equation. It contracts to that of the 
ordinary two-dimensional hydrogen atom in the limit q --~ • 1. The degeneracy 
is discussed generally and some properties of the q-energy spectrum are studied 
both for real q and for complex q of magnitude unity. 

The quantum group, the deformation of Lie algebra, has been studied 
by many researchers (Drinfel'd, 1985; Jimbo, 1985; Woronowicz, 1987). In 
order to explore the application of the quantum group, some q-analogs of 
dynamical systems have been discussed. Biedenham (1989), Macfarlane 
(1989), and Sun and Fu (1989) realized the quantum group SUq(2) in terms 
of  the q-analog of the harmonic oscillator. Kibler and Negadi (1991) gave 
the q-analog of the three-dimensional hydrogen atom. Yang and Xu (1993) 
also researched the q-analog of the three-dimensional hydrogen atom by 
applying the Kastaanheimo-Stiefel transformation and the q-oscillator. Chan 
and Finkelstein (1994) deformed the hydrogen atom from the point of  view 
of the wave function in the group space of SO(3). 

In this paper, the su(2) symmetry in the ordinary two-dimensional hydro- 
gen atom will be deformed to the quantum group SUq(2). Its discrete energy 
spectrum will be derived, its degeneracy will be discussed, and some proper- 
ties of the energy spectrum will be studied both for real and unitary (Iql 2 
= 1) quantum deformation parameter. 
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It is well known that there is a Lie algebra su(2) [or so(3)] in the two- 
dimensional hydrogen atom. It is generated by 

= (  ~e411/2ax ( I'ze4~l/2Ay J3 L 
J ,  , = , = 

where E is the energy of the electron of the two-dimensional hydrogen 
atom, and 

1 ih x 
Ax = - ~  Lpy + -2~e 2 Px - - 

P 

1 ih y 
Ay - I'ze 2 Lpx + ~ py -- "~ (2) 

are the components of the conserved Runge-Lenz vector, and L is the con- 
served orbital angular momentum. The generators (1) obey the commuta- 
tion relation 

[Ja, Jb] = ieabcJ~ 

where %be (a, b, c = 1, 2, 3) stands for the permutation symbol. The Casimir 
operator of this su(2) Lie algebra can be expressed as 

j2 j~ + j2 + j ]  P ~e4 h2 
= - ( 3 )  

2E 4 

Sometimes equation (3) will be called the Pauli equation, as for the ordinary 
three-dimensional hydrogen atom (Pauli, 1926). 

A q-analog of the two-dimensional hydrogen atom can be realized by 
deforming the Lie algebra su(2) to the quantum group SUq(2) that is described 
by the q-generators Jq+, Jq_, and Jq3, which obey the commutation relations 

(4) 

where 

sinh -qx 
[X]q- sinh~i ~ = l n q  

and the q-Casimir operator is 

j2  = jq_jq+ ..]_ [jq3]q[Jq3 .-I- 1]q (5) 

Correspondingly, from (1), one can define the q-angular momentum Lq and 
the q-Runge-Lenz vector Aq: 
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where 

and 

Aq = Aqx i + Aqyj, Lq = hJq3 (6) 

1 
Aqx = ~ (Aq+ q- Aq_), 

1 
Aqy = 2ii (mq+ - Aq_) 

/ 2E \1/2 
aq+. = h ~ - ~ )  4+_ (7) 

in which Eq stands for the energy of the two-dimensional q-hydrogen atom. 
We have shown that the above-mentioned q-generators can be expressed by 
the generator of the Lie algebra (Zhang and Duan, 1994). 

Using the Casimir operator (5), one can determine the q-analog of the 
Pauli equation (3) as follows: 

j2  = jq_jq+ ..~ [Jq3]q[Jq3 @ 1]q - -  p~e4 h 2 
2Eq 4 (8) 

The q-Pauli equation (8) reduces to the Pauli equation (3) of the ordinary 
two-dimensional hydrogen atom in the limit q -+ 1. The energy spectrum of 
the q-analog of the two-dimensional hydrogen atom can also be determined 
from the q-Pauli equation (8) directly. 

Let us consider the Hilbert space of the representation of the ordinary 
Lie algebra su(2) as 

H = { [ j m ) : j  ~ N; m = - j ,  - j  + 1 , . . . , j }  (9) 

Because the generator -/3 in the two-dimensional hydrogen atom corresponds 
to the orbital angular momentum through (1), the indexes j and m in the 
Hilbert space (9) take integer values. Using the Jimbo representation of the 
quantum group SUq(2), we have 

Jq• = {[j ~ m]q[j ".1- m + 1]q}l/2ljm • 1) 

Jq3 [jm) = m 

Then, acting with the q-Pauli equation (8) on the Hilbert space (9), we derive 
the energy spectrum of the q-analog of the two-dimensional hydrogen atom 
in the form 

~ e  4 1 
Eq = Eqj = 2 h  z [j]q[j q- 1]q q- 1 / 4  (10) 
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When the quantum deformation parameter q ~ 1, the energy spectrum (10) 
contracts to 

i, L e  4 

E = Es = 2h2s 2 

with 

1 1 3 5  
s = j +  - 

2 2 ' 2 ' 2  . . . .  

This is just the energy spectrum of the usual two-dimensional hydrogen atom. 
For fixed j,  the q-angular momentum Lq may have (2j + 1) eigenvalues 

that correspond to (2j + 1) states. Thus, the degeneracy of the energy spectrum 
(10) is (2j + 1). This is the same as the energy spectrum of the ordinary 
two-dimensional hydrogen atom. 

It is obvious that the ground-state level (j = 0) of the q-analog of 
the two-dimensional hydrogen atom is equal to that of the ordinary two- 
dimensional hydrogen atom. Both are nondegenerate in case of real q. 

Generally speaking, 

[j ]q >-- j 

for positive real q. From equation (10), one can easily deduce 

Eq~E 

in the above-mentioned case. In other words, the q-deformation of the Pauli 
equation makes the energy of the two-dimensional hydrogen atom higher for 
positive real quantum deformation parameter. 

When the q-deformation parameter is a phase (q = e i~ with real "q), the 
energy spectrum is very interesting. It varies periodically with -q. In the limit 
~q ~ n-rr (n = integer), i.e., q ~ _-_ 1, the energy spectrum (10) also reduces 
to that of ordinary two-dimensional hydrogen atom. If "q = q/n,  the energy 
Eqj takes the value of  the ground state of the q-analog of the two-dimensional 
hydrogen atom in the case w h e r e j / n  or ( j  + 1)/n is an integer. The energy 
spectrum (10) also is distributed periodically within quantum numberj.  But 
there are only n energy levels in this case. The degeneracy of the energy Eqj 
becomes complicated. Sometimes it is infinite. 

In this paper, a q-analog of the two-dimensional hydrogen atom has 
been proposed through deforming the Lie algebra su(2) in the system into 
the quantum group SUq(2). The corresponding discrete energy spectrum was 
obtained in (10). It was shown that the q-energy spectrum reduces to that of 
the ordinary two-dimensional hydrogen atom in the limit q --~ ___ 1. Generally, 
the degeneracy of the q-energy level is the same as that of the ordinary 
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system. The energy level is deformed to be higher for positive real q. When 
q is a phase, the q-energy spectrum becomes more interesting, in that the 
total number of energy levels can be determined by the quantum deformation 
parameter as n = (i In q)/~r. 
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